(a)因式分解X^3-3X^2+3X-1 (b)利用(a)部的結果,解Sin^3 θ-3Sin^2 θ+3Sinθ=0,其中0°≦θ<360°? Sol.(a)(x-1)^3?

2018-05-21 2:45 pm

回答 (2)

2018-05-21 3:52 pm
✔ 最佳答案
(a)因式分解x^3-3x^2+3x-1
Sol
x^3-3x^2+3x-1
=(x^3-x^2)+(-2x^2+2x)+(x-1)
=x^2(x-1)-2x(x-1)+(x-1)
=(x^2-2x+1)(x-1)^2
=(x-1)^3
(b)利用(a)部的結果,解Sin^3 θ-3Sin^2 θ+3Sinθ=0,其中0°≦θ<360°?
Sol
Sin^3 θ-3Sin^2 θ+3Sinθ=0
Sin^3 θ-3Sin^2 θ+3Sinθ-1=-1
(Sinθ-1)^3=-1
Sinθ-1=-1 (2虛根)
Sinθ=0

θ=0° or θ=180°
2018-05-23 11:37 am
(a) X³-3X²+3X-1
= (X³-2X²+X) -X²+2X-1
= X(X²-2X+1) - (X²-2X+1)
= (X-1)(X²-2X+1)
= (X-1)(X-1)(X-1)
= (X-1)³

(b) sin³θ - 3sin²θ + 3sinθ = 0
sin³θ - 3sin²θ + 3sinθ - 1 = -1
從(a):    (sinθ - 1)³ = -1
        sinθ-1 = -1
         sinθ = 0
         ∴ θ = 0° 或 180° (0°≦θ<360°)


收錄日期: 2021-04-18 18:16:23
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20180521064544AA4XDS6

檢視 Wayback Machine 備份