(a)因式分解X^3-3X^2+3X+1 (b)利用(a)部的結果,解Sin^3 θ-3Sin^2 θ+3Sinθ=0,其中0°≦θ<360°? Sol.(a)(x-1)^3?

2018-05-18 2:48 pm

回答 (1)

2018-05-20 10:25 am
✔ 最佳答案
Lin :
(a)部的 「 X^3-3X^2+3X+1」是寫錯了, 應為「 X^3-3X^2+3X-1」才可得出 Sol.: (x-1)^3。
你可試把 (x-1)^3 展開, 看看得出什麽!
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
解 :-
==
(a)設 f(X) = X³-3X²+3X-1
∵ f(1) =1³-3(1)²+3(1)-1=0, ∴ X-1 是 f(X)的因數
又從 長除法, 得出 (X³-3X²+3X-1) ÷ (X-1) = X²-2X+1
∴ X³-3X²+3X-1 = (X-1)(X²-2X+1)
       = (X-1)(X-1)(X-1)
       = (X-1)³

(b) sin³θ - 3sin²θ + 3sinθ = 0
sin³θ - 3sin²θ + 3sinθ - 1 = -1
從(a):    (sinθ - 1)³ = -1
        sinθ-1 = -1
         sinθ = 0
         ∴ θ = 0° 或 180° (0°≦θ<360°)


收錄日期: 2021-04-18 18:05:03
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20180518064830AAkoo4E

檢視 Wayback Machine 備份