(a)試以asinθ=b的形式表示tan(270°+θ)=5+sin(180°+θ)/cos(180°-θ),其中a和b都是常數。 (b)利用(a)部的結果,解tan(270°+θ)cos(180°-θ)=5+sin(180°+θ),其中0°≦θ<360°?

2018-05-16 9:07 am

回答 (2)

2018-05-16 3:24 pm
✔ 最佳答案
Sol
(a)
Tan(270°+θ)=[5+Sin(180°+θ)]/Cos(180°-θ)
-Cotθ=(5-Sinθ)/(-Cosθ)
Cotθ=(5-Sinθ)/Cosθ
Cosθ/Sinθ=(5-Sinθ)/Cosθ
Cos^2 θ=5Sinθ-Sin^2 θ
5Sinθ=1
(b)
Sinθ=1/5
θ=ArcSin(1/5) or θ=180°-ArcSin(1/5)
2018-05-16 3:56 pm
(a)
a sinθ = b ---> sinθ = b/a
tan(270°+θ) = - 1/tan θ = - cos θ /sin θ
sin(180°+θ) = - sin θ
cos(180°-θ) = - cos θ
- cos θ/sin θ=(5- sin θ)/(- cos θ)
(b)
(cos θ)^2 = sin θ(5-sin θ)
1 - (sin θ)^2 = 5 sin θ - (sin θ)^2
sin θ =1/5


收錄日期: 2021-04-18 18:06:03
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20180516010700AARjrDp

檢視 Wayback Machine 備份