(a)簡化Sin^2 10°+Sin^2 20°+Sin^2 30°+...+Sin^2 80° (b)利用(a)部的結果,解 Sin^2 10°+Sin^2 20°+Sin^2 30°+...+Sin^2 80°=9Cosθ,其中 0°≦θ<360°?

2018-04-28 1:37 pm

回答 (1)

2018-04-28 9:07 pm
✔ 最佳答案
(a) sin² 10°+ sin² 20°+ sin² 30°+ . . . . . .+ sin² 80°
= (sin² 10°+ sin² 20°+ sin² 30°+ sin² 40°) + [(sin 50°)² + (sin 60°)² + (sin 70°)² + (sin 80°)²]
= (sin² 10°+ sin² 20°+ sin² 30°+ sin² 40°) + [(cos 40°)² + (cos 30°)² + (cos 20°)² + (cos 10°)²] - - →《sinθ = cos(90°-θ) 》
= (sin² 10°+cos² 10°)+(sin² 20°+cos² 20°)+(sin² 30°+cos² 30°)+(sin² 40°+cos² 40°)
= 1+1+1+1 - - - - - - - - - - - - - -→《sin²θ + cos²θ = 1》
= 4

(b) sin² 10°+ sin² 20°+ sin² 30°+ . . . . . .+ sin² 80° = 9 cosθ
=> 4 = 9 cosθ - - - - - - - - -→ 從(a)
=> cosθ=4/9
=> θ= 63.61° or 360°- 63.61° (至小數後 2 位) (0°≦θ<360°)
∴ θ= 63.61° or 296.39° (至小數後 2 位)


收錄日期: 2021-04-18 18:06:04
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20180428053721AAmrngS

檢視 Wayback Machine 備份