✔ 最佳答案
Titration of weak acid with strong base.....
25.0 mL of acid with 10.0 mL of titrant. Concentrations are reduced to:
25.0 mL HNO2 x (0.128 mol HNO2 / 1L) / 35.0 mL = 0.09143 M HNO2
10.0 mL OH- x (0.122 mol OH- / 1L) / 35.0 mL = 0.03486 M OH-
HNO2(aq) + OH^-(aq) --> NO2^-(aq) + HOH(l)
0.09143M ...0.03486M.... ...................... .................. before
0.05657M .....0 ............... 0.03486M ........................ after
HNO2 <==> H+ + NO2^- ............. Ka = 7.2x10^-4
0.05657....... 0 .....0.03486 .......... initial
-x ............... +x .... +x .................. change
0.05657-x..... x ....0.03486+x
Ka = [H+][NO2^-] / [HNO2]
7.2x10^-4 = x(0.03486+x) / (0.05657-x)
x = 0.00111
[H+] = 0.00111M
pH = -log[H+] = 2.95 ............ to two significant digits*
=================
25.0 mL of acid with 10.0 mL of titrant. Concentrations are reduced to:
25.0 mL HNO2 x (0.128 mol HNO2 / 1L) / 45.0 mL = 0.07111 M HNO2
20.0 mL OH- x (0.122 mol OH- / 1L) / 45.0 mL = 0.05422 M OH-
HNO2(aq) + OH^-(aq) --> NO2^-(aq) + HOH(l)
0.07111M ...0.05422M.... ...................... .................. before
0.01689M .....0 ............... 0.05422M ........................ after
HNO2 <==> H+ + NO2^- ............. Ka = 7.2x10^-4
0.01689....... 0 .....0.05422 .......... initial
-x ............... +x .... +x .................. change
0.01689-x..... x ....0.05422+x
Ka = [H+][NO2^-] / [HNO2]
7.2x10^-4 = x(0.05422+x) / (0.01689-x)
x = 8.895x10^-4
[H+] = 8.895x10^-4M
pH = -log[H+] = 3.05............ to two significant digits*
* When taking the log of a number, only the digits to the right of the decimal reflect the precision of the original number. Based on the precision of Ka (2 significant digits), the final answer is expressed to two significant digits.