Algebra 2 questions/ Combine functions?

2018-03-08 3:53 am
1. Given f(x)=3x^2+5 and g(x)=x−2 .

What is (fg)(x) ?



a. −3x^2+x−7

b. 3x^3−10

c. 3x^3−6x^2+5x−10

d. 3x^2−x+7


2. Given f(x)=2x^2−5x−3 and g(x)=2x^2+x .

What is (f/g)(x) ?



x−3/x where x≠0, −1/2

x/x−3 where x≠0, 3

x/−2x−3 where x≠0, −3/2

−2x−3/x where x≠0, −1/2

回答 (3)

2018-03-08 4:30 am
✔ 最佳答案
.
1. Given f(x) = 3x² + 5 and g(x) = x - 2

(fg)(x)
= f(x) * g(x)
= (3x² + 5)(x - 2)
= 3x³ - 6x² + 5x - 10
━━━━━━━━━ ANSWER C

2. Given f(x) = 2x² - 5x - 3 and g(x) = 2x² + x

f(x)
= 2x² - 5x - 3
= (x - 3)(2x + 1)

g(x)
= 2x² + x
= ( x )(2x + 1)

(f/g)(x)
= f(x) / g(x) the denominator cannot be 0; ( x )(2x + 1) ≠ 0, ∴ x ≠0, 2x + 1 ≠0 or x ≠ -½

= [ (x - 3)(2x + 1) ] / [ ( x )(2x + 1) ]

= (x - 3) / x where x ≠ 0, x ≠ -½
━━━━━━━━━━━━━━
2018-03-08 4:41 am
1) (fg)(x) = f(x)*g(x) = (3x^2+5)(x-2)
= 3x^3-6x^2+5x-10
Answer c.
2) (f/g)(x) = f(x)/g(x) = (2x^2-5x-3)/(2x^2+x)
= [(2x+1)(x-3)]/[x(2x+1)]
= (x-3)/x where x ≠ 0, -1/2
2018-03-08 8:28 am
1.
Given f(x) = 3x^2 + 5 and g(x) = x − 2
(fg)(x) = 3x^3 - 6x^2 + 5x - 10
Answer choice:
c. 3x^3−6x^2+5x−10
2.
Given f(x) = 2x^2 − 5x − 3 and g(x) = 2x^2 + x
(f/g)(x) = x − 3/x where x ≠ 0, 
−1/2 x/x−3 where x≠0, 3 x/−2x−3 where x≠0, 
−3/2 −2x−3/x where x≠0, −1/2


收錄日期: 2021-04-24 00:57:41
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20180307195332AAGsR8W

檢視 Wayback Machine 備份