INTEGRATION of sinx/root(36-cos^2x)?

2018-03-02 7:21 pm

回答 (1)

2018-03-02 7:43 pm
✔ 最佳答案
Let u = (1/6)cosx
Then, du = -(1/6)sinx dx and cosx = 6u

∫ {sinx dx / √(36 - cos²x)}
=(-6) ∫ {(-1/6) sinx dx / √[36 - (6u)²]}
=(-6) ∫ {du / √[6² - (6u)²]}
=(-6) ∫ {du / 6√(1 - u)²]}
= -∫{du/ √(1 - u)²]}
= -arccosu + C
= -arccos(cosx/6) + C


收錄日期: 2021-05-01 14:10:00
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20180302112123AAu9akk

檢視 Wayback Machine 備份