[數學] 設f(x)=(x^4-2x^3-3x^2+5)^3, g(x)=x^3+x^2-2x+1, 則f[g(x)]展開式的奇次項係數和為?

2018-02-24 10:06 am

回答 (1)

2018-02-24 6:06 pm
✔ 最佳答案
Sol
p(x)=a(2n)x^(2n)+a(2n-1)x^(2n-1)+…+a(1)x+a(0)
p(1)=a(2n)+a(2n-1)+a(2n-2)+…+a(1)+a(0)
p(-1)=a(2n)-a(2n-1)+a(2n-2)+….-a(1)+a(0)
p(1)-p(-1)=2a(2n-1)+2a(2n-3)+2a(2n-5)+…+2a(1)
g(1)=1+1-2+1=1
g(-1)=-1+1+2+1=3
f(1)=(1-2-3+5)^3=1
f(3)=(81-54-27+5)^3=125
2*f[g(x)]展開式的奇次項係數和
=f[g(1)]-f[g(-1)]
=f(1)-f(3)
=1-125
=-124
f[g(x)]展開式的奇次項係數和=-62


收錄日期: 2021-04-30 22:38:56
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20180224020656AAqYZIi

檢視 Wayback Machine 備份