✔ 最佳答案
P(x)/(x^(2)-2x+3)=f(x)+(x-2)
Q(x)/(x^(2)-2x+3)=g(x)+(x+3)
Solve x^(2)-2x+3=0
x1=1+sqrt(2)i
X2=1-sqrt (2)i
P(1+sqrt (2)i)=x-2 =-1+sqrt(2)i
P(1-sqrt (2)i)=x-2 =-1-sqrt(2)i
Q(1+sqrt(2)i)=x+3=4+sqrt(2)i
Q(1-sqrt(2)i)=x+3=4-sqrt(2)i
Remainder of p(x)*Q(x) is a linear equation because the divisor is a quadratic equation
P(1+sqrt(2)i)*Q(1+sqrt(2)i=ax+b
P (-1-sqrt(2)i)*Q(-1-sqrt(2)i=ax+b
Then from this system of equation you can find answer
a=3
b=-9
3x-9 is the Remainder
Good luck????