高中數學二次方程問題求救?

2017-12-07 6:02 pm
a part 是因式分解兩條方程 : y^2+2y+1=(y+1)^2 a^2-6ab+9b^2=(a-3b)^2

b part求詳解:
If the equation x^2+2(a-1)x-(a^2+4a-6ab+9b^2)=0 has one double real root,
where a and b are constants,find the values of a and b.

方程 x^2+2(a-1)x-(a^2+4a-6ab+9b^2)=0 有兩個相同實根,a和b是常數,找a和b的值.
答案:a= -1 b= -1/3
更新1:

高中數學二次方程問題求救

回答 (1)

2017-12-07 8:56 pm
✔ 最佳答案
For x²+2(a-1)x-(a²+4a-6ab+9b²)=0 :
discriminant, ∆=[2(a-1)]²+4(a²+4a-6ab+9b²)

If the eqt. has 1 double real root,
4(a-1)²+4(a²+4a-6ab+9b²)=0
(a-1)²+(a²+4a-6ab+9b²)=0
a²-2a+1+a²+4a-6ab+9b²=0
(a²+2a+1)+(a²-6ab+9b²)=0 ←---------- (#)
(a+1)²+(a-3b)²=0
(a+1)²=0 and (a-3b)²=0
a= -1 and a-3b=0
a= -1 and (-1)-3b=0
∴ a= -1 and b= - ⅓

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ COMPLETED ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(#) :
這一行的構思 , 是由 " (a) part " 給出的提示而來!


收錄日期: 2021-04-24 00:56:59
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20171207100231AARl1Yq

檢視 Wayback Machine 備份