線性代數vector spaces的問題!求救!?

2017-11-07 2:45 pm
Let v1=(1,0,1),v2=(2,1,3),v3=(4,2,6), and w=(3,1,2).
a. Is w in {v1, v2, v3}? How many vectors are in {v1, v2, v3}?
b. How many vectors are in Span{v1, v2, v3}?
c. Is w in the subspace spanned by {v1, v2, v3}? Why?
請問這問題該怎麼解
解答上說明是
a.There are only three vectors in {v1, v2, v3}, and w is not one of them.
b. There are infinitely many vectors in Span{v1, v2, v3}.
c. w is in Span {v1, v2, v3}.
但是小弟我實在是看不懂
請教各位數學高手ˊˋ

回答 (2)

2017-11-08 12:05 am
✔ 最佳答案
a. {v1, v2, v3}, 大括號的集合表示法, 此集合只有三個元素: v1=(1,0,1),v2=(2,1,3),and v3=(4,2,6). Obviously w=(3,1,2) is not there.

b./c. Span{v1, v2, v3} = {all linear combinations of v1,v2, and v3}={(u1,u2,u3) | (u1, u2, u3)=c1v1+c2v2+c3v3, for some c1,c2,c3 constants}. Therefore w is in Span{v1, v2, v3}.

閣下的問題在數學符號的誤解
2017-11-08 12:39 pm
我大概知道您意思了,謝謝解答!


收錄日期: 2021-05-03 19:50:53
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20171107064531AArAAQa

檢視 Wayback Machine 備份