how to prove e^u = limit(x→+∞) (1-u/x)^(-x) ? Please help?
How to prove e^u = limit(x→+∞) (1-u/x)^(-x) ?
回答 (2)
e^u = limit(x→+∞) (1-u/x)^(-x)
e^x=(1+x/n)^n
limit(x→+∞) (1-u/x)^(-x)
=[1+(-u)/x]^x(-1)
=(e^-u)^-1
=e^u
Sol
Set y=(1-u/x)^x
lny=xln(1-u/x)
A= lim(x->∞)_(1-u/x)^(-x)
=e^[ lim(x->∞)_(-x)ln(1-u/x)
=e^[ lim(x->∞)_ln(1-u/x)/(-1/x)
=e^[ lim(p->0)_ln(1-up)/(-p) 0/0 type
dln(1-up)/dp=dln(1-up)/d(1-up)*d(1-up)/dp=-u/(1-up)
A= e^[ lim(p->0)_[-u/(1-up)]/(-1)]
=e^u
收錄日期: 2021-04-24 00:46:52
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20171027135900AAi3agK
檢視 Wayback Machine 備份