請問如何計算:f(x)=ax^8-bx^7+1可被(x-1)^2整除,求a.b之值 (ans:a=7,b=8)?

2017-10-10 1:30 am

回答 (1)

2017-10-10 6:35 am
✔ 最佳答案
Sol
f(x)=ax^8-bx^7+1
f’(x)=8ax^7-7bx^6
f(1)=a-b+1=0
f’(1)=8a-7b=0
8(a-b+1)-(8a-7b)=0
-b+8=0
b=8
a=7
or
f(x)=ax^8-bx^7+1
f(1)=a-b+1=0
b=a+1
f(x)=ax^8-(a+1)x^7+1
=ax^8-ax^7-x^7+1
=ax^7(x-1)-(x^7-1)
=ax^6(x-1)-(x-1)(x^6+x^5+x^4+x^3+x^2+1)
=(x-1)(ax^6-x^6-x^5-x^4-x^3-x^2-x-1)
g(x)=ax^6-x^6-x^5-x^4-x^3-x^2-x-1
g(1)=a-7=0
a=7
b=8


收錄日期: 2021-04-30 22:20:32
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20171009173008AAyr4Hx

檢視 Wayback Machine 備份