Maths Help?

2017-09-27 8:57 pm
The two values A and B that give the partial function decomposition:

3-x/x^2-3x+2 = A/x-1 + B/x-2

I tried working this out but the two values I got are not on the multiple choice option list. Can anyone please help?

回答 (4)

2017-09-27 9:04 pm
✔ 最佳答案
(3 - x)/(x² - 3x + 2) = [A/(x - 1)] + [B/(x - 2)]
(3 - x)/(x² - 3x + 2) = [A(x - 2)/(x - 1)(x - 2)] + [B(x - 1)/(x - 1)(x - 2)]
Then, 3 - x = A(x - 2) + B(x - 1)

Put x = 1: 2 = -A, then A = -2
Put x = 2: 1 = B, then B = 1

Hence, (3 - x)/(x² - 3x + 2) = [1/(x - 2)] - [2/(x - 1)]
2017-09-27 11:50 pm
(3-x)/(x^2-3x+2)=(3-x)/[(x-1)(x-2)]
Let 3-x=A(x-2)+B(x-1) identically.
Taking x=2, get
B=1
Taking x=1, get
A=-2
=>
(3-x)/(x^2-3x+2)=1/(x-2)-2/(x-1)
2017-09-27 9:27 pm
= [A/(x - 1)] + [B/(x - 2)]

= [A.(x - 2) + B.(x - 1)] / [(x - 1).(x - 2)]

= [Ax - 2A + Bx - B] / (x² - 3x + 2)

= [- (2A + B) + x.(A + B)] / (x² - 3x + 2) → you compare with: (3 - x)/(x² - 3x + 2)

- (2A + B) = 3 ← equation (1)

(A + B) = - 1 ← equation (2)


You calculate (1) + (2)

- (2A + B) + (A + B) = 3 + (- 1)

- 2A - B + A + B = 3 - 1

- A = 2

→ A = - 2


Recall (2): (A + B) = - 1

B = - 1 - A → given that: A = - 2

→ B = 1
2017-09-27 8:59 pm
****


收錄日期: 2021-05-01 13:45:59
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20170927125725AAvzB5T

檢視 Wayback Machine 備份