What is the inverse of (2x^9)+3?

2017-09-27 11:44 am

回答 (4)

2017-09-27 12:00 pm
y = f(x) = 2x⁹ + 3

y = 2x⁹ + 3
y - 3 = 2x⁹
2x⁹ = y - 3
x⁹ = (y - 3)/2
x = ⁹√[(y - 3)/2]

Then f⁻¹(x) = ⁹√[(x - 3)/2]
2017-09-27 12:24 pm
x = { [ y - 3] / 2 }^(1/9)
2017-09-27 12:01 pm
y = 2x⁹ + 3


Switch the variables x and y:


x = 2y⁹ + 3


Now, solve for y to find the inverse function:


x - 3 = 2y⁹


Divide each side by two:


(x - 3)/2 = y⁹


Take the ninth root of each side:


⁹√( (x - 3)/2 ) = y


I ll now change the y into the inverse function notation:


f⁻¹(x) = ⁹√( (x - 3)/2 )


This is your inverse function.
2017-09-27 11:45 am
Additive inverse is -2x^9 -3
Inverse function 9th root((x-3) / 2)


收錄日期: 2021-04-18 17:51:00
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20170927034414AAeJ9m4

檢視 Wayback Machine 備份