求詳解 1.以知二次函數y=a(x-3)^2+b=ax^2+cx+14=a(x+1)(x-d)則下列敘述何者正確?(A)a>0(B)b<0(C)c>0(D)d<0 2.以知三正數a,b,c形成公差3的等差數列,若y=ax^2+bx+c的圖形頂點在x軸上,則b最接近哪一數?

2017-09-17 4:50 pm

回答 (1)

2017-09-18 2:17 am
✔ 最佳答案
(1)D
若y=ax^2+bx+c的圖形頂點在x軸上,則是二重根
x=-b/2a
x^2=(-b/2a)^2=c/a
b^2=4ac
b=a+3 c=a+6
(a+3)^2=4a(a+6)
a=[-6+/-厂48]/2
a=-3+厂48 or =-3-厂48(reject)
b=a+3
=-3厂48+3
=厂48
2017-09-17 7:14 pm
1已知二次函數y=a(x-3)^2+b=ax^2+cx+14=a(x+1)(x-d)則下列敘述何者正確?(A)a>0(B)b<0(C)c>0(D)d<0
Sol
頂點(3,b)
y=a(x-3)^2+b=ax^2+cx+14=a(x+1)(x-d)
y=a(x^2-6x+9)+b=ax^2+cx+14=a(x^2-dx+x-d)
y=ax^2-6ax+(9a+b)=ax^2+cx+14=ax^2+a(1-d)x-ad
c=-6a=a(1-d),9a+b=14=-ad
1-d=-6
d=7
a=-2
c=12
b=32
y=-2x^2+12x+14
(C)
2己知三正數a,b,c形成公差3的等差數列,若y=ax^2+bx+c的圖形頂點在x軸上,則b最接近哪一數?
Sol
b=a+3,c=a+6
y=ax^2+bx+c=a(x-m)^2=a(x^2-2mx+m^2)
b= -am,c=am^2
b^2=4a^2m^2=4ac
(a+3)^2=4a(a+6)
a^2+6a+9=4a^2+24a
3a^2+18a-9=0
a^2+6a-3=0
a=(-6+√48)/2=2√3-3
b=2√3


收錄日期: 2021-04-24 00:44:20
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20170917085020AANwPC6

檢視 Wayback Machine 備份