How to simplify this expression?

2017-09-12 8:56 pm
(√(x-1)/(√(x+1)-√x))+(√(x+1)/(√(x-1)+√x)), where x>1. I need the steps. The answer is √(x^2-x)+√(x^2+x).

回答 (2)

2017-09-13 7:33 am
✔ 最佳答案
Sol
A=√(x-1),B=√x,C=√(x+1)
AB=√(x^2-x)
BC=√(x^2+x)
C^2-B^2=1
A^2-B^2=-1
√(x-1)/(√(x+1)-√x))+(√(x+1)/(√(x-1)+√x))
=A/(C-B)+C/(A+B)
=(AC+AB)/(C^2-B^2)+(AC-BC)/(A^2-B^2)
=AC+AB-AC+BC
=AB+BC
=√(x^2-x)+√(x^2+x)
2017-09-12 11:11 pm
{(√(x-1))(√(x+1)+√x)/(√(x+1)-√x)(√(x+1)+√x)}+(√(x+1)(√(x-1)-√x)/(√(x-1)+√x)(√(x-1)-√x)


收錄日期: 2021-04-18 17:54:50
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20170912125648AAZOr1S

檢視 Wayback Machine 備份