✔ 最佳答案
Let s₁, s₂ and s₃ be the solubility of MX, M₂X and MX₃ respectively.
_______ MX(s) ⇌ Mⁿ⁺(aq) + Xⁿ⁻(aq) ___ Ksp
At eqm ________ s₁ M ____ s₁ M
Hence, Ksp = s₁²
Then, s₁ = √(Ksp)
_______ M₂X(s) ⇌ 2M⁺(aq) + X²⁻(aq) ___ Ksp
At eqm _________ 2s₂ M ____ s₂ M
Hence, Ksp = (2s₂)² * s₂ = 4s₂³
Then, s₂ = ∛(Ksp/4)
_______ MX₃(s) ⇌ M³⁺(aq) + 3X⁻(aq) ___ Ksp
At eqm _________ s₃ M ____ 3s₃ M
Hence, Ksp = s₃ * (3s₃)³ = 27s₃⁴
Then, s₃ = ∜(Ksp/27)
As Ksp is very small, i.e. Ksp ≪ 1,
then [s₃ = ∜(Ksp/27)] > [s₂ = ∛(Ksp/4)] > [s₁ = √(Ksp)]
Solubility : MX₃ > M₂X > MX
The answer : 2) MX₃ > M₂X > MX