Population mean?

2017-08-12 12:27 pm
The life span of a rabbit has a normal distribution with mean of 9.2 years and standard deviation of 1.8 years. A random sample of 36 rabbits is selected, find the probability that the mean lifespan is
(a) within three quarters of a standard deviation of the population mean
(b) within 0.5 year of population mean
(c) at least 0.5 year lower than population mean
(d) between 8.1 and 9.3 years
How to solve this? Can show me the steps?

回答 (1)

2017-08-12 9:05 pm
✔ 最佳答案
(a)
μ of xbar = μ = 9.2
σ of xbar = σ / √n = 1.8 / √36 = 1.8 / 6 = 0.3

P( 9.2 - 1.8*3/4 < xbar < 9.2 + 1.8*3/4 )
= P( 9.2 - 1.35 < xbar < 9.2 + 1.35 )
= P( - 1.35 < xbar - 9.2 < 1.35 )
= P( - 1.35/0.3 < ( xbar - 9.2 )/0.3 < 1.35/0.3 )
= P( - 4.5 < Z < 4.5 ) , where Z ~ N(0,1)
= 1 - 2*P( Z < - 4.5 )
≒ 1 - 2*3.4*10^(-6)
≒ 0.999993 ..... Ans

(b)
P( - 0.5 < xbar - 9.2 < 0.5 )
= P( - 0.5/0.3 < ( xbar - 9.2 )/0.3 < 0.5/0.3 )
≒ P( - 1.67 < Z < 1.67 )
= 1 - 2*( Z < - 1.67 )
= 1 - 2*0.0475
= 0.905 ..... Ans

(c)
P( xbar < 9.2 - 0.5 )
= P( xbar - 9.2 < - 0.5 )
= P( ( xbar - 9.2 )/0.3 < - 0.5/0.3 )
≒ P( Z < - 1.67 )
= 0.0475 ..... Ans

(d)
P( 8.1 < xbar < 9.3 )
= P( 8.1 - 9.2 < xbar - 9.2 < 9.3 - 9.2 )
= P( - 1.1 < xbar - 9.2 < 0.1 )
= P( - 1.1/0.3 < ( xbar - 9.2 )/0.3 < 0.1/0.3 )
≒ P( - 3.67 < Z < 0.33 )
= P( Z < 0.33 ) - P( Z < - 3.67 )
≒ 0.6293 - 1.2*10^(-4)
≒ 0.629 ..... Ans


收錄日期: 2021-05-02 14:12:04
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20170812042718AA0INKE

檢視 Wayback Machine 備份