✔ 最佳答案
Identities:
tan(A + B) = (tanA + tanB) / (1 - tanA tanB)
tan(A - B) = (tanA - tanB) / (1 + tanA tanB)
Special angles :
tan30° = 1/√3 and tan60° = √3
tan(30° + θ) = 2 tan(60° - θ)
(tan30° + tanθ) / (1 - tan30° tanθ) = 2 (tan60° - tanθ) / (1 + tan60° tanθ)
[(1/√3) + tanθ] / [1 - (1/√3) tanθ] = 2 (√3 - tanθ) / (1 + √3 tanθ)
{[(1/√3) + tanθ] × √3} / {[1 - (1/√3) tanθ] × √3} = 2 (√3 - tanθ) / (1 + √3 tanθ)
(1 + √3 tanθ) / (√3 - tanθ) = 2 (√3 - tanθ) / (1 + √3 tanθ)
(1 + √3 tanθ)² = 2 (√3 - tanθ)²
1 + 2 √3 tanθ + 3 tan²θ = 2 (3 - 2 √3 tanθ + tan²θ)
1 + 2 √3 tanθ + 3 tan²θ = 6 - 4 √3 tanθ + 2 tan²θ
(3 tan²θ - 2 tan²θ) + (2 √3 tanθ + 4 √3 tanθ) + (1 - 6) = 0
tan²θ + 6 √3 tanθ - 5 = 0
Hence, tan²θ + 6 √3 tanθ - 5 = 0