Find the reminder of x^8 + x + 1 when divided by x^2 + 2x + 1.?

2017-08-07 8:18 pm

回答 (1)

2017-08-07 8:26 pm
Sol
設x^8+x+1=p(x)(x^2+2x+1)+ax+b
8x^7+1=p(x)(2x+2)+p’(x)(x^2+2x+1)+a
8*(-1)^7+1=a
a=-7
x^8+x+1=p(x)(x^2+2x+1)-7x+b
(-1)^8+(-1)+1=7+b
1=7+b
b=-6
餘式=-7x-6
or
x^2+2x+1=0
x^2=-2x-1
x^8+x+1
=>(-2x-1)^4+x+1
=>(4x^2+4x+1)(4x^2+4x+1)+x+1
=>(-8x-4+4x+1)(-8x+4x+1)+x+1
=(-4x-3)(-4x-3)+x+1
=>(16x^2+24x+9)+x+1
=>(-32x-16+24x+9)+x+1
=>-7x-6
or
y=x+1
x=y-1
x^8+x+1
=(y-1)^8+x+1
=y^8-8y^7+…-8y+1+x+1
餘式=-8y+1+x+1=-8(x+1)+1+x+1=-7x-6


收錄日期: 2021-04-30 22:21:39
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20170807121843AAwXj51

檢視 Wayback Machine 備份