二次函數的相關問題?

2017-08-05 1:18 am
若二次函數y=(k^2-5)x^2+k的圖形是一開口向下之拋物線,且(1,1)為此圖形上一點,則k=?
〈答案為2,求計算過程〉

拜託幫幫我....

回答 (2)

2017-08-05 1:53 am
✔ 最佳答案
因為(1,1)為此圖形上一點,可以代入x=1 & y=1 於函數y=(k^2-5)x^2+k
y = (k^2 - 5) x^2 + k
1 = (k^2 - 5) + k
0 = k^2 + k - 6
k = 2 or -3 <==== 解二次方程
因為圖形是一開口向下之拋物線,x^2 的係數必要是負數,
k^2 - 5 < 0
所以只有當 k=2 時才合乎開口向下這個條件。
2017-08-05 7:23 am
The graph opening downwards means (k^2 - 5) < 0, that is (k - sqrt 5)(k + sqrt 5) < 0, so - sqrt 5 < k < sqrt 5........ (1) Sub (1,1) into the function, 1 = (k^2 - 5)(1^2) + k, k^2 + k - 6 = 0, (k + 3)(k - 2) = 0, k = - 3 or 2........ (2). To satisfy both (1) and (2), k = 2. That is y = - x^2 + 2


收錄日期: 2021-04-24 23:23:36
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20170804171838AAw258j

檢視 Wayback Machine 備份