Help me find f if f′′′(x)=sin(x),f(0)=−10,f′(0)=−6,f′′(0)=−3, I've attempted it but don't know what's wrong?

2017-07-15 10:22 am
first derivative: -cosx+C
second derivative: -sinx+Ct+D
third derivative: -cosx+Ct^2+Dt+E

Finding C, D & E
f''(0)=-3 | -1 + C = -3, C=-2
f'(0)=-6 | 0+D=-6, D=6
f(0)=-10 | 1+E=-10, E=-11

f(x)= -cosx-2x^2+6t-11

but this is apparently wrong and I don't know what I'm doing wrong.
更新1:

f′′′(x)=sin(x),f(0)=−10,f′(0)=−6,f′′(0)=−3. is the continuation of the [...] sorry it cut off

回答 (1)

2017-07-15 10:55 am
✔ 最佳答案
f'''(x) = sin(x)
∫f'''(x) = f''(x) = -cos(x) + C
∫f''(x) = f'(x) = -sin(x) + Cx + D
∫f'(x) = f(x) = cos(x) + ½Cx² + Dx + E

f''(0) = -cos(0) + C
-3 = -1 + C
C = -2

f'(0) = -sin(0) + (-2)(0) + D
-6 = D

f(0) = cos(0) + ½(-2)(0)² + (-6)(0) + E
-10 = 1 + E
E = -11

f(x) = cos(x) + ½(-2)x² + (-6)x + (-11)
f(x) = cos(x) - x² - 6x - 11


收錄日期: 2021-04-24 00:34:11
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20170715022256AANUSbL

檢視 Wayback Machine 備份