✔ 最佳答案
f(x) = f(a) + f ' (a)( x - a ) + f '' (a)( x - a )²/2! + ......
Take f(x) = 3*cos x , x = 0.1 , a = 0 , then
3*cos 0.1
= f( 0.1 )
≒ f(a) + f ' (a)( x - a ) + f '' (a)( x - a )²/2!
= f(0)+ f ' (0)*0.1 + f '' (0)*0.1²/2!
= 3 + 0 + (-3)*0.01/2
= 2.985
The Remainder Estimation Theorem
If there are positive constants M and r such that
|f^(n+1) (t)|≦ M * r^(n+1) , for all t between a and x, then
|Rn(x)|≦ M * r^(n+1) * |x - a|^(n+1) / (n+1)!
For this question,
f(x) = 3*cos x
f ' (x) = - 3*sin x
f '' (x) = - 3*cos x
f(³) (x) = 3*sin x
f(⁴) (x) = 3*cos x
.........................
Since |sin x|and |cos x|are bounded by 1,
|f^(n+1) (t)|≦ 3 , for all t
So M = 3 , r = 1
|R₂(0.1)|≦ 3 * 0.1^3 / 3! = 0.0005
So we conclude that
3*cos 0.1 = 2.985 + R , where|R|≦ 0.0005
That is, an upper bound for error is 0.0005