✔ 最佳答案
4x³ + 2x - 8 = 0 → let: x = (u + v)
4.(u + v)³ + 2.(u + v) - 8 = 0
4.[(u + v)².(u + v)] + 2.(u + v) - 8 = 0
4.[(u² + 2uv + v²).(u + v)] + 2.(u + v) - 8 = 0
4.[u³ + u²v + 2u²v + 2uv² + uv² + v³] + 2.(u + v) - 8 = 0
4.[u³ + v³ + 3u²v + 3uv²] + 2.(u + v) - 8 = 0
4.[(u³ + v³) + (3u²v + 3uv²)] + 2.(u + v) - 8 = 0
4.[(u³ + v³) + 3uv.(u + v)] + 2.(u + v) - 8 = 0
4.(u³ + v³) + 12uv.(u + v) + 2.(u + v) - 8 = 0 → you factorize: (u + v)
4.(u³ + v³) + (u + v).(12uv + 2) - 8 = 0 → suppose that: (12uv + 2) = 0 ←equation (1)
4.(u³ + v³) + (u + v).(0) - 8 = 0
4.(u³ + v³) - 8 = 0 ←equation (2)
You can get a system of 2 equations:
(1) : (12uv + 2) = 0
(1) : 12uv = - 2
(1) : uv = - 1/6
(1) : u³v³ = (- 1/6)³
(2) : 4.(u³ + v³) - 8 = 0
(2) : 4.(u³ + v³) = 8
(2) : u³ + v³ = 2
Let: U = u³
Let: V = v³
You can get a new system of 2 equations:
(1) : UV = (- 1/6)³ ← this is the product P
(2) : U + V = 2 ← this is the sum S
You know that the values S & P are the solutions of the following equation:
x² - Sx + P = 0
x² - 2x + (- 1/6)³ = 0
Δ = (- 2)² - [4 * (- 1/6)³]
Δ = 4 + (4/6³)
Δ = 868/6³
Δ = 217/54 = (1/3)².(217/6)
x₁ = [2 - (1/3).√(217/6)]/2 = 1 - (1/6).√(217/6) ← this is U
x₂ = [2 + (1/3).√(217/6)]/2 = 1 + (1/6).√(217/6) ← this is V
Recall: u³ = U → u = U^(1/3)
Recall: v³ = V → v = V^(1/3)
Recall: x = u + v
x = [1 - (1/6).√(217/6)]^(1/3) + [1 + (1/6).√(217/6)]^(1/3)
x ≈ (- 0.132232483912045) + (1.26040638227384)
x ≈ 1.1281738983618