✔ 最佳答案
15
Sol
(a)
p=(α+β)/2,q=(α-β)/2
p+q=α,p-q=β
Sinα-Sinβ
=Sin(p+q)-Sin(p-q)
=(SinpCosq+SinqCosp)-(SinpCosq-SinqCosp)
=2SinqCosp
Cosα-Cosβ
=Cos(p+q)-Cos(p-q)
=(CospCosq-SinpSinq)-(CospCosq+SinpSinq)
=-2SinpSinq
(Sinα-Sinβ)/(Cosα-Cosβ)
=2SinqCosp/(-2SinpSinq)
=-Cosp/Sinp
=-Cotp
=-Cot[(α+β)/2]
(b)
Set Cosp=3/√34,Sinq=5/√34
3Sinα-5Cosβ=3Sinβ-5Cosα
3Sinα-3Sinβ=5Cosβ-5Cosα
(Sinα-Sinb)/(Cosα-Cosb)=3/(-5)
So
Cot[(α+β)/2]=3/5
Tan[(α+β)/2]=5/3
Tan(α+β)=(1-5/3)/[1-25/9]=(9-5)/(-16)=-1/4