假設m,n皆為自然數,則恰有2個m值滿足不等式8/15<m/(m+n)<7/13的最大n值及最小n值為何?
回答 (2)
Sol
8/15<m/(m+n)<7/13
15/8>(m+n)/m>13/7
7/8>n/m>6/7
8/7<m/n<7/6
設m兩解k,k+1
(k-1)/n<=8/7<k/n<(k+1)/n<7/6<=(k+2)/n
(k-1)/n<=8/7
K-1<=8n/7
k<=1+8n/7
7/6<=(k+2)/n
7n<=6k+12
7n-12<=6k
7n/6-2<=k
7n/6-2<=k<=1+8n/7
7n/6-2<=1+8n/7
(7n/6-8n/7)<=3
(49n-48n)<=126
n<=126
8/15<m/(m+n) --> 8(m+n)<15m --> 8n<7m
m/(m+n)<7/13 --> 13m<7(m+n) --> 6m<7n
48n<42m<49n
(8/7)n<m<(7/6)n
2<[(7/6)-(8/7)]n<3
2<(1/42)n<3
84<n<126
n=85 時, m=98,99
n=125 時, m=123,124,125
...
n=121 時, m=139,140,141
n=120 時, m=138,139
Ans:n 最大值 120, 最小值 85
收錄日期: 2021-04-30 22:01:12
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20170422031130AARhzk3
檢視 Wayback Machine 備份