Maths - Application of Integration
http://upload.lsforum.net/users/public/o249271797398578_nw40.jpg?
回答 (1)
Given y1 = 1 + x^2 & y2 = 5x - 5
Find volume between the both revoluting y-axis
Solution:
The common point is at (2, 5).
Volume = Pure y1 + Mixed y1 & y2 = V1 + V2
V1 = ∫(0~1)2πx*y1*dx
= ∫2πx(x^2 + 1)dx
= ∫2π(x^3 + x)dx
= 2π(x^4/4 + x^2/2)
= 2π(1/4 + 1/2)
= 3π/2
V2 = ∫2πx(y1 - y2)dx
= ∫(1~2) 2πx(x^2 + 1 - 5x + 5)dx
= ∫2π(x^3 - 5x^2 + 6x)dx
= 2π(x^4/4 - 5x^3/3 + 3x^2)
= 2π(15/4 - 5*7/3 + 3*3)
= 2π/12 * (15*3 - 35*4 + 9*12)
= π/6 * (45 + 108 - 140)
= 13π/6
V = V1 + V2
= 3π/2 + 13π/6
= 22π/6
= 11π/3
= Answer
收錄日期: 2021-04-30 20:01:10
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20170416075056AAKKOZr
檢視 Wayback Machine 備份