1+2+3+4+5+6+...+100?
回答 (9)
1+2+3+4+5+6+...+100
=(最大数+最小数)x中间数
=1+100)x50
=5050
n
∑ k =n(n+1)/2
k=1
n=100代入
100×101÷2
=5050
A:5050
1+2+3+4+5+6+...+100
=(1+100)*100/2
=5050
1+2+3+4+5+6+7+8+9+10x10=5500/5050
5050 is definitely the answer!
1+2+3+4+5+6...+100
=(1+100)x50
=5050
收錄日期: 2021-04-18 16:12:08
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20170323101209AAI3iyt
檢視 Wayback Machine 備份