given 2sin(theta)cos(theta)+cos(theta)=0. Find Theta.?

2017-03-14 8:03 pm
I have no idea how to do this problem can somebody help me out?
更新1:

Given 2sin(theta)cos(theta)+cos(theta)=0 Find Theta.?

更新2:

Answer choices are. a- Pie over 2, 3pie over 4, 3pie over 2, 7pie over 4 b- pie over 2, 7pie over 6, 3pie over 2, 11pie over 6 c- pie over 2, 3pie over 4, 5pie over 4, 7pie over 4 d- pie over 2, pie, 3pie over 2

回答 (4)

2017-03-14 8:10 pm
Assume that 0° ≤ θ < 360°

2 sinθ cosθ + cosθ = 0
cosθ (2 sinθ + 1) = 0
cosθ = 0 or 2 sinθ + 1 = 0
cosθ = 0 or sinθ = -1/2
θ = 90° or θ = (180° + 30°), (360° - 30°)
θ = 90° , 210°, 330°
2017-03-14 8:34 pm
: give answers in degrees if
sin2 theta+cos theta=0
I am not sure how to start this problem other than sin2 theta would be
(2sin theta cos theta)

give answers in degrees if
sin2 theta+cos theta=0
====================================
You already recognized that you need to use the trig identity sin(2 theta)=2sin(theta)cos(theta)
Substituting that expression gives (and letting theta = x to make it easier to write):
2sin(x)cos(x)+cos(x)=0
cos(x)(2sin(x)+1)=0

This equation is satisfied if either of the two factors are equal to 0.
So we have
cos(x) = 0
2sin(x)+1 = 0
Restricting ourselves to the interval (0,360 deg) the two solutions are
x = 90 deg
sin(x) = -1/2
x = 210 deg
2017-03-14 8:23 pm
2sinθcosθ + cosθ = 0
cosθ(2sinθ + 1) = 0
cosθ=0 or sinθ = -1/2
θ = 90°, 270°, 210°, and 330° where 0° ≤ θ < 360°
Graph: https://www.desmos.com/calculator/khxlqaoq63
2017-03-14 8:05 pm
Incomplete question.


收錄日期: 2021-04-18 16:11:43
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20170314120340AAgSGa9

檢視 Wayback Machine 備份