dy/dx = 1/2 y^2 cot x (ii) Given that y = 2 when x = 1/6 π, solve this differential equation to find the equation of the curve.?
回答 (1)
dy/dx = (1/2)y²cotx
so, ∫ (1/y²) dy = ∫ cotx dx
=> (-1/y) = ln(sinx) + C
Now, with y = 2 and x = π/6 we have:
-1/2 = ln[sin(π/6)] + C
i.e. -1/2 = ln(1/2) + C
so, C = -1/2 - ln(1/2)
Hence, (-1/y) = ln(sinx) -1/2 - ln(1/2)
or, 1/y = 1/2 + ln(1/2) - ln(sinx)
=> 1/y = 1/2 + ln[1/(2sinx)]
=> 2/y = 1 + 2ln[1/(2sinx)]
i.e. y/2 = 1/{1 + 2ln[1/(2sinx)] }
Hence, y = 2/{1 + 2ln[1/(2sinx)]}.....yuk!!
:)>
收錄日期: 2021-04-24 00:22:23
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20170312083620AAuE1JT
檢視 Wayback Machine 備份