求解方程式dy/dx=(-2xy^3 - 2)/(3x^2y^2 + e^y)?

2017-03-02 7:17 pm
求解方程式dy/dx=(-2xy^3 - 2)/(3x^2y^2 + e^y)

我解到∂M/∂y=-6xy^2 ∂N/∂x=6xy^2
所以知道這並非正合方程式

但是我不知道接下來該如何繼續解題

回答 (1)

2017-03-02 9:51 pm
✔ 最佳答案
dy/dx = ( - 2xy³ - 2 ) / ( 3x²y² + e^y )
( - 2xy³ - 2 )dx = ( 3x²y² + e^y )dy
( 2xy³ + 2 )dx + ( 3x²y² + e^y )dy = 0

令 M = 2xy³ + 2 , N = 3x²y² + e^y
則 ∂M/∂y = ∂N/∂x = 6xy²
故原式為正合方程式( Exact ODE )
因此存在 Φ( x , y ) = c1 滿足原式, 使得 :
∂Φ/∂x = 2xy³ + 2 , ∂Φ/∂y = 3x²y² + e^y

Φ
= ∫ ( 2xy³ + 2 )dx + f(y)
= x²y³ + 2x + f(y)

∂Φ/∂y = 3x²y² + f ' (y) = 3x²y² + e^y
f ' (y) = e^y
f(y) = e^y + c2

Φ( x , y ) = x²y³ + 2x + f(y) = c1
x²y³ + 2x + e^y + c2 = c1
x²y³ + 2x + e^y = c ..... Ans


收錄日期: 2021-05-02 14:11:20
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20170302111719AA2tVhB

檢視 Wayback Machine 備份