✔ 最佳答案
= { 1 / [1 + cos(x)] } + { [1 / [1 - cos(x)] }
= { [1 - cos(x)] + [1 + cos(x)] } / { [1 + cos(x)].[1 - cos(x)] }
= [1 - cos(x) + 1 + cos(x)] / [1 - cos²(x)]
= 2 / [1 - cos²(x)] → you know that: cos²(x) + sin²(x) = 1 → sin²(x) = 1 - cos²(x)
= 2 / sin²(x)
= 2 * [1/sin²(x)]
= 2 * [1/sin(x)]² → you know that: 1/sin(x) = csc(x)
= 2.csc²(x)
= [1 - sec(x)] / [1 + sec(x)] → you know that: sec(x) = 1/cos(x)
= [1 - {1/cos(x)}] / [1 + {1/cos(x)}]
= [{cos(x)/cos(x)} - {1/cos(x)}] / [{cos(x)/cos(x)} + {1/cos(x)}]
= [{cos(x) - 1}/cos(x)] / [{cos(x) + 1}/cos(x)] → you can simplify by cos(x)
= [{cos(x) - 1}] / [{cos(x) + 1}]
= [cos(x) - 1] / [cos(x) + 1]
= cos(t) / [1 + sin(t)] → you multiply by cos(t) the top and the bottom
= [cos(t) * cos(t)] / {[1 + sin(t)] * cos(t)}
= cos²(t) / {[1 + sin(t)].cos(t)} → you know that: cos²(t) + sin²(t) = 1 → cos²(t) = 1 - sin²(t)
= [1 - sin²(t)] / {[1 + sin(t)].cos(t)} → you recognize: a² - b² = (a + b).(a - b)
= {[1 + sin(t)].[1 - sin(t)} / {[1 + sin(t)].cos(t)} → you can simplify by [1 + sin(t)]
= {[1 - sin(t)]} / {cos(t)}
= [1 - sin(t)] / cos(t)
= [1 - sin(t)]² / cos²(t) → you know that: cos²(t) + sin²(t) = 1 → cos²(t) = 1 - sin²(t)
= [1 - sin(t)]² / [1 - sin²(t)] → you recognize: a² - b² = (a + b).(a - b)
= [1 - sin(t)]² / { [1 - sin(t)].[1 + sin(t)] }
= { [1 - sin(t)].[1 - sin(t)] } / { [1 - sin(t)].[1 + sin(t)] } → you can simplify by [1 - sin(t)]
= [1 - sin(t)] / [1 + sin(t)] → you made a mistake
= [sec(x) + 1] / tan(x) → you know that: sec(x) = 1/cos(x)
= [{1/cos(x)} + 1] / tan(x) → you know that: tan(x) = sin(x)/cos(x)
= [{1/cos(x)} + 1] / [sin(x)/cos(x)]
= [ {1/cos(x)} + {cos(x)/cos(x)} ] / [sin(x)/cos(x)]
= [ {1 + cos(x)}/cos(x) ] / [sin(x)/cos(x)] → you can simplify by cos(x)
= [1 + cos(x)] / sin(x) → you divide by [1 + cos(x)] the top and the bottom
= { [1 + cos(x)] / [1 + cos(x)] } / { sin(x) / [1 + cos(x)] } → you simplify
= 1 / { sin(x) / [1 + cos(x)] } → you multiply by tan(x) the top and the bottom
= tan(x) / { tan(x).sin(x) / [1 + cos(x)] } → you know that: tan(x) = sin(x)/cos(x)
= tan(x) / { {sin(x)/cos(x)}.sin(x) / [1 + cos(x)] }
= tan(x) / { {sin²(x)/cos(x)} / [1 + cos(x)] }
= tan(x) / { sin²(x) * [1/cos(x)] / [1 + cos(x)] } → you know that: sin²(x) = 1 - cos²(x)
= tan(x) / { [1 - cos²(x)] * [1/cos(x)] / [1 + cos(x)] } → you know that: 1 - cos²(x) = [1 + cos(x)].[1 - cos(x)]
= tan(x) / { [1 + cos(x)].[1 - cos(x)] * [1/cos(x)] / [1 + cos(x)] } → you can simplify by [1 + cos(x)]
= tan(x) / { [1 - cos(x)] * [1/cos(x)] }
= tan(x) / { [1/cos(x)] - [cos(x)/cos(x)] }
= tan(x) / { [1/cos(x)] - 1 } → you know that: 1/cos(x) = sec(x)
= tan(x) / { [sec(x)] - 1 }
= tan(x) / [sec(x) - 1]