Can someone help me factor x^4-3x^2+2?
回答 (4)
Method 1 :
x⁴ - 3x² + 2
= (x²)² - 3x² + 2
= (x² - 1)(x² - 2)
= (x - 1)(x + 1)(x² - 2)
====
Method 2 :
Let f(x) = x⁴ - 3x² + 2
f(1) = (1)⁴ - 3(1)² + 2 = 0
Hence, (x - 1) is one of the factors of (x⁴ - 3x² + 2).
f(-1) = (-1)⁴ - 3(-1)² + 2 = 0
Hence, (x + 1) is one of the factors of (x⁴ - 3x² + 2).
(x - 1)(x + 1) = x² - 1
x⁴ - 3x² + 2 = x²(x²) - 3x² + 2
= x²(x² - 1) + x² - 3x² + 2
= x²(x² - 1) - 2x² + 2
= x²(x² - 1) - 2(x² - 1)
= (x² - 1)(x² - 2)
= (x - 1)(x + 1)(x² - 2)
let p = x², then the expression becomes p²-3p+2, which you should be able to factor.
(x^2 - 2)(x^2 - 1)
= (x^2 - 2)(x+1)(x-1).
[ x ² - 2 ] [ x ² - 1 ]
[ x - √2 ] [ x + √2 ] [ x - 1 ] [ x + 1 ]
收錄日期: 2021-04-20 19:30:04
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20170214153454AALD83y
檢視 Wayback Machine 備份