How do I find exact value of cos(2A) if cos A = sqrt(11)/6? And A is in Quadrant I?
回答 (2)
Method 1 :
cos(2A)
= 2 cos²A - 1
= 2 × (√11/6)² - 1
= -14/36
= -7/18
-------------------
Method 2 :
Since A is in Quadrant I, sinA > 0
sin²A + cos²A = 1
sin²A + (√11/6)² = 1
sin²A + (11/36) = 1
sin²A = 1 - (11/36)
sin²A = 25/36
sinA = 5/6
cos(2A)
= cos(A + A)
= cos(A)cos(A) - sin(A)sin(A)
= (√11/6)² - (5/6)
= (11/36) - (25/36)
= -14/36
= -7/18
Do you know this identity?
cos(a + b) = cos(a).cos(b) - sin(a).sin(b) → suppose that: b = a
cos(a + a) = cos(a).cos(a) - sin(a).sin(a)
cos(2a) = cos²(a) - sin²(a) → recall: cos²(a) + sin²(a) = 1 → sin²(a) = 1 - cos²(a)
cos(2a) = cos²(a) - [1 - cos²(a)]
cos(2a) = cos²(a) - 1 + cos²(a)
cos(2a) = 2.cos²(a) - 1 → given: cos(a) = (√11)/6
cos(2a) = 2.[(√11)/6]² - 1
cos(2a) = 2.[11/36] - 1
cos(2a) = (22/36) - (36/36)
cos(2a) = - 14/36
cos(2a) = - 7/18
收錄日期: 2021-04-18 16:01:54
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20170210073946AAZG6YR
檢視 Wayback Machine 備份