Please help! If (x+1) and (x-2) are factors f(x)=x^3+ax^2+bx+2, find the values of a and b and find the other factor?
回答 (6)
f(x) = (x-2)(x^2-1) = x^3 - 2x^2-x+2
a = -2
b = -1
Missing factor = (x-1)
Method 1 :
Let f(x) = x³ + ax² + bx + 2
Since (x + 1) is a factor of f(x), then f(-1) = 0
(-1)³ + a(-1)² + b(-1) + 2 = 0
-1 + a - b + 2 = 0
a - b = -1 …… [1]
Since (x - 2) is a factor of f(x), then f(2) = 0
(2)³ + a(2)² + b(2) + 2 = 0
8 + 4a + 2b + 2 = 0
4a + 2b = -10
2a + b = -5 …… [2]
[1] + [2] :
3 = -6
a = -2
Put a = -2 into [1] :
(-2) - b = -1
b = -1
Let (x + c) be the other factor.
x³ - 2x² - x + 2
= (x³ - 2x²) + (-x + 2)
= x²(x - 2) - (x - 2)
= (x² - 1)(x - 2)
= (x - 1)(x + 1)(x - 2)
The other factor = x - 1
====
Method 2 :
Let (x + c) be the other factor.
x³ + ax² + bx + 2 = (x + 1)(x - 2)(x + c)
Compare the constant terms on the both sides :
2 = 1 * (-2) * c
c = -1
The other factor = (x - 1)
x³ + ax² + bx + 2 = (x + 1)(x - 1)(x - 2)
x³ + ax² + bx + 2 = (x² - 1)(x - 2)
x³ + ax² + bx + 2 = (x² - 1)(x - 2)
x³ + ax² + bx + 2 = x³ - 2x² - x + 2
Compare the coefficients on the both sides :
a = -2
b = -1
F(x) = x3 + ax² + bx + 2
That equation factors are
(x + 1) and (x - 2)
F(-1) = -1 + a - b + 2
F(-1) = a – b + 1…………1
F(2) = 23 + a(2)² + b(2) + 2
F(2) = 8 + 4a + 2b + 2
F(2) = 4a + 2b + 10………….2
Solving 1 and 2
(a - b + 1 = 0)
4a + 2b + 10
---------------
2(a - b + 1 = 0)
4a + 2b + 10 = 0
-----------------
2a - 2b + 2 = 0
4a + 2b + 10 = 0
----------------
6a + 12 = 0
A = -2 sub equation 1
-2 - b + 1 = 0
-1 - b = 0
B = -1
If (x + 1) is factor f(x) = x³ + ax² + bx + 2, it means that: f(- 1) = 0
f(x) = x³ + ax² + bx + 2 → when x = - 1, the result is 0
(- 1)³ + a.(- 1)² + b.(- 1) + 2 = 0
- 1 + a - b + 2 = 0
a - b = - 1
a = b - 1 ← equation (1)
If (x - 2) is factor f(x) = x³ + ax² + bx + 2, it means that: f(2) = 0
f(x) = x³ + ax² + bx + 2 → when x = 2, the result is 0
(2)³ + a.(2)² + b.(2) + 2 = 0
8 + 4a + 2b + 2 = 0
4a + 2b = - 10
2a + b = - 5 → recall (1): a = b - 1
2.(b - 1) + b = - 5
2b - 2 + b = - 5
3b = - 3
→ b = - 1
Recall (1): a = b - 1
a = - 1 - 1
→ a = - 2
f(x) = x³ + ax² + bx + 2 → where: a = - 2 and where: b = - 1
f(x) = x³ - 2x² - x + 2
f(x) = (x³ - 2x²) - (x - 2)
f(x) = x².(x - 2) - (x - 2)
f(x) = (x - 2).(x² - 1)
f(x) = (x - 2).(x + 1).(x - 1) ← you can see that the other factor is (x - 1)
Hello,
if x + 1 is a factor, then x = - 1 is a zero of the polynomial (that is f(- 1) = 0):
f(- 1) = (- 1)³ + a(- 1)² + b(- 1) + 2 = 0
- 1 + a(1) - b + 2 = 0
a - b + 1 = 0 (#)
at the same time, if x - 2 is a factor, then x = 2 is a zero of the polynomial (that is f(2) = 0):
f(2) = (2)³ + a(2)² + b(2) + 2 = 0
8 + a(4) + 2b + 2 = 0
4a + 2b + 10 = 0
(dividing both sides by 2)
2a + b + 5 = 0 (##)
to find out a and b then let's solve the system:
a - b + 1 = 0 (#)
2a + b + 5 = 0 (##)
a = b - 1
2(b - 1) + b + 5 = 0
a = b - 1
2b - 2 + b + 5 = 0
a = b - 1
3b + 3 = 0
a = b - 1
3b = - 3
a = b - 1 = - 1 - 1 = - 2
b = - 1
then the polynomial becomes:
f(x) = x³ + (- 2)x² + (- 1)x + 2 =
x³ - 2x² - x + 2
to find the other factor we need to divide the polynomial by the product
(x + 1)(x - 2):
(x³ - 2x² - x + 2) /[(x + 1)(x - 2)] =
(expanding the denominator)
(x³ - 2x² - x + 2) /(x² - 2x + x - 2) =
(x³ - 2x² - x + 2) /(x² - x - 2) =
(long dividing)
x³ - 2x² - x + 2 | x² - x - 2
(dividing x³ by x²)
x³ - 2x² - x + 2 | x² - x - 2
........ ......... ....| x
(multiplying x by each term of the divisor and writing the results, with opposite signs, beneath the terms of the same degree of the dividend)
..x³ - 2x²... - x + 2 | x² - x - 2
- x³. + x² + 2x...... | x
(adding like terms together on the left)
..x³ - 2x²... - x + 2 | x² - x - 2
- x³. + x² + 2x...... | x
----- ------ ------ -----
. 0... - x².. + x + 2
(dividing - x² by x²)
..x³ - 2x²... - x + 2 | x² - x - 2
- x³. + x² + 2x...... | x - 1
----- ------ ------ -----
. 0... - x².. + x + 2
(multiplying - 1 by each term of the divisor and writing the results, with opposite signs, beneath the terms of the same degree of the trinomial down on the left)
..x³ - 2x²... - x + 2 | x² - x - 2
- x³. + x² + 2x...... | x - 1
----- ------ ------ -----
. 0... - x².. + x + 2
.......+ x²... - x. - 2
(adding like terms together down on the left, obtaining the remainder)
..x³ - 2x²... - x + 2 | x² - x - 2
- x³. + x² + 2x...... | x - 1
----- ------ ------ -----
. 0... - x².. + x + 2
.......+ x²... - x. - 2
------ ------- ------ ---
..........0... + 0 + 0 (remainder)
the other factor is the quotient (x - 1)
in conclusion:
x³ - 2x² - x + 2 = (x + 1)(x - 2)(x - 1)
I hope it's helpful
(x+1)(x-2)(x-c) = x^3+ax^2+bx+2
... + 2c = ... + 2
c = 1
(x+1)(x-2)(x-1) = x^3+ax^2+bx+2
Any multiple of 0 is 0.
When x=-1, (x+1)=0 and therefore x^3+ax^2+bx+2 = 0.
When x=2, (x-2)=0 and therefore x^3+ax^2+bx+2 = 0.
When x=1, (x-1)=0 and therefore x^3+ax^2+bx+2 = 0.
(-1)^3 + a(-1)^2 + b(-1) + 2 = 0
(2)^3 + a(2)^2 + b(2) + 2 = 0
(1)^3 + a(1)^2 + b(1) + 2 = 0
a = -2
b = -1
收錄日期: 2021-04-18 16:00:18
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20170207093008AAppcGC
檢視 Wayback Machine 備份