高中數學問題 a,b,c屬於實數, a+b+c=2, a^2+3b^2+6c^2=24, a的最小值是多少? 答案:-4/3 請問詳細作法,謝謝。?

2017-02-06 11:07 am

回答 (1)

2017-02-06 2:40 pm
Sol
a+b+c=2
c=2-a-b
24=a^2+3b^2+6c^2
=a^2+3b^2+6(2-a-b)^2
=a^2+3b^2+6(a^2+b^2+4-4a-4b+2ab)
=7a^2+9b^2+24-24a-24b+12ab
9b^2+(12a-24)b+(7a^2-24a)=0
D=(12a-24)^2-4*9*(7a^2-24a)>=0
(6a-12)^2-9*(7a^2-24a)>=0
(2a-4)^2-(7a^2-24a)>=0
4a^2-16a+16-7a^2+24a>=0
-3a^2+8a+16>=0
3a^2-8a-16<=0
(3a+4)(a-4)<=0
(a+4/3)(a-4)<=0
-4/3<=a<=4


收錄日期: 2021-04-30 22:00:36
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20170206030730AATjWuW

檢視 Wayback Machine 備份