Let L be any tangent line to curve x^(0.5)+y^(0.5)=c^(0.5) (in the first quadrant). show that the sum of the x- and y- intercepts of L is c.?

2017-02-01 10:51 am

回答 (1)

2017-02-01 7:54 pm
✔ 最佳答案
Sol
x^(1/2)+y^(1/2)=c^(1/2)
(1/2)x^(-1/2)+(1/2)y^(-1/2)y’=0
x^(-1/2)+y^(-1/2)y’=0
y^(-1/2)y’=-x^(-1/2)
y’=-(x/y)^(-1/2)=-(y/x)^(1/2)
Set L:y-b=-(b/a)^(1/2)*(x-a)
a^(1/2)+b^(1/2)=c^(1/2)
When x=0
y-b=-(b/a)^(1/2)(-a)
y=b+(ab)^(1/2)
When y=0
0-b=-(b/a)^(1/2)*(x-a)
X-a=(ab)^(1/2)
x=a+(ab)^(1/2)
So
[b+(ab)^(1/2)]+[a+(ab)^(1/2)]
=a+b+2(ab)^(1/2)
=[a^(1/2)+b^(1/2)]^2
=[c^(1/2)]^2
=c


收錄日期: 2021-04-30 22:00:47
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20170201025149AAef4vQ

檢視 Wayback Machine 備份