坐標平面上有A、B、C三點,坐標分別為(8,7)(3,2)(-1,5),求A、B、C三點圍成的三角形面積為何? 坐標平面上,原點到直線L:3x+4y-12=0之最短距離為何? 坐標平面上,P:(2,7)到直線L:3x+4y-12=0之最短距離為何? 有哪位大大能告訴我?

2017-01-26 2:28 pm

回答 (3)

2017-01-27 4:19 pm
✔ 最佳答案
第一題:
1.將三角形補成一個矩形(頂點與頂點垂直相連)
2.三角形面積=長方形-三個小三角形
3.長方形面積=(8-(-1))x(7-2)=45
三個三角形面積=
(3-(-1))x(5-2)/2=6
(8-3)x(7-2)/2=12.5
(8-(-1))x(7-5)/2=9
45-6-12.5-9=17.5
第二題
最短距離=垂直距離=三角形的高
直線L與X軸,Y軸的交點為(4,0),(3,0)
3^2+4^2=5^2 3x4/5=2.4
2017-01-31 12:54 am
1. 13又2分之1
2. 5
3. 2√5

※算式用打的實在太難寫了!!!如果要過程可以告知我,會在想辦法補上
2017-01-26 5:24 pm
(AB)^2=(7-2)^2+(8-3)^2,AB=7.07
(BC)^2=(5-2)^2+(-1-3)^2,BC=5
(AC)^2=(-1-8)^2+(5-7)^2,AC=9.22
Heron's formula,半周長s=(7.07+5+9.22)/2=10.6
(area)^2=(10.6)(10.6-7.07)(10.6-5)(10.6-9.22)
area=17.0
L:3x+4y-12=0,L:y=-(3/4)x+3
x-intercept=4,y-intercept=3
since the intercept points and origin make right angle triangle
angle of stright line and x-axis=45
sin45=(shortest distance from origin)/4
shortest distance from origin=2.83
to make P intercept with line L, there is another stright line(R) perpendicular to L and pass through P
R:y=(4/3)x+c,c=13/3
we got y=-(3/4)x+3 and y=(4/3)x+13/3
line Land line R intercept at point(-16/25,87/25)
(shortest distance)^2=(-16/25-2)^2+(87/25-7)^2
shortest distance=4.46


收錄日期: 2021-04-18 15:58:52
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20170126062845AAyCAOc

檢視 Wayback Machine 備份