PROVE sin^-1(3/5)+sin^-1(5/13)=sin^-1(56/65)?

2016-11-28 5:31 pm

回答 (2)

2016-11-28 5:56 pm
x = arcsin(3/5)
y = arcsin(5/13)
sin x = 3/5, cos x = 4/5
sin y = 5/13, cos y = 12/13
sin(x+y) = (3/5)(12/13)+(4/5)(5/13)
= 36/65 + 20/65
= 56/65
x+y = arcsin(56/65)
2016-11-28 5:40 pm
 
sin(sin⁻¹(3/5) + sin⁻¹(5/13))
= sin(sin⁻¹(3/5)) cos(sin⁻¹(5/13)) + cos(sin⁻¹(3/5)) sin(sin⁻¹(5/13))
= (3/5) √(1−25/169) + √(1−9/25) (5/13)
= (3/5) (12/13) + (4/5) (5/13)
= 36/65 + 20/65
= 56/65
= sin(sin⁻¹(56/65))

sin(sin⁻¹(3/5) + sin⁻¹(5/13)) = sin(sin⁻¹(56/65))
⇒ sin⁻¹(3/5) + sin⁻¹(5/13) = sin⁻¹(56/65)


收錄日期: 2021-04-27 23:15:21
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20161128093104AAHI8WX

檢視 Wayback Machine 備份