1.設x=√2-1,則x^5+2x^4+5x^2+8x-1之值為何? 2.設a屬於R,若方程式x^2+(a-5)x+a+3=0有兩正實根,則a的範圍為?

2016-11-26 11:00 am

回答 (1)

2016-11-26 12:01 pm
✔ 最佳答案
1.設x=√2-1,則x^5+2x^4+5x^2+8x-1之值為何?
Sol
x=√2-1
x+1=√2
x^2+2x-1=0
x^2=-2x+1
1 2  0  5  8 -1|
...-2  0 -2 -6   |-2
 ...   1  0 .. 1.. 3|1
----------------------------------------------------
1 0  1  3 |3  2
x^5+2x^4+5x^2+8x-1
=(x^2+2x-1)(x^3+x+3)+3x+2
=3x+2
=3√2-1
2.設a屬於R,若方程式x^2+(a-5)x+a+3=0有兩正實根,則a的範圍為?
Sol
D=(a-5)^2-4*1*(a+3)>=0
a^2-14a+13>=0
(a-13)(a-1)>=0
a>=13 or a<=1


收錄日期: 2021-04-30 21:59:28
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20161126030025AAyYr79

檢視 Wayback Machine 備份