Probability?

2016-11-23 11:54 am
2 biased coins are tossed H T
Find P(exactly 1H | at least 1H) Coin1 Prob 0.492 0.508
Find P(exactly 1T | at least 1T) Coin2 Prob 0.579 0.421



Also, please advise how you calculate it,Thank you!

回答 (1)

2016-11-24 9:58 am
✔ 最佳答案
Let P( X , Y ) denote P( Coin 1 tossed X , Coin 2 tossed Y )
P( H H ) = 0.492*0.579 = 0.284868
P( H T ) = 0.492*0.421 = 0.207132
P( T H ) = 0.508*0.579 = 0.294132
P( T T ) = 0.508*0.421 = 0.213868

(1)
P( exactly 1H | at least 1H )
= P( exactly 1H ∩ at least 1H ) / P( at least 1H )
= P( exactly 1H ) / P( at least 1H )
= [ P( H T ) + P( T H ) ] / [ P( H H ) + P( H T ) + P( T H ) ]
= ( 0.207132 + 0.294132 ) / ( 0.284868 + 0.207132 + 0.294132 )
≒ 0.638 ..... Ans

(2)
P( exactly 1T | at least 1T )
= P( exactly 1T ∩ at least 1T ) / P( at least 1T )
= P( exactly 1T ) / P( at least 1T )
= [ P( H T ) + P( T H ) ] / [ P( H T ) + P( T H ) + P( T T ) ]
= ( 0.207132 + 0.294132 ) / ( 0.207132 + 0.294132 + 0.213868 )
≒ 0.701 ..... Ans


收錄日期: 2021-05-02 14:11:31
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20161123035413AAkHS7V

檢視 Wayback Machine 備份