Let X be a random variable with a normal distribution such that E(X) = µ and Var(X) = σ^2 .?

2016-11-21 8:31 pm
How to calculate P((X − µ)^2/σ^2 < 2.706), P(X > µσ|X > µ)) and P(µ − σ < X < µ + 2σ)?


Thanks!

回答 (1)

2016-11-21 8:55 pm
✔ 最佳答案
 
Use z-score chart:
http://www.regentsprep.org/Regents/math/algtrig/ATS7/ZChart.htm

P((X−µ)²/σ² < 2.706)
= P(z² < 2.706)
= P(−1.64 < z < 1.64)
= 0.9495 − 0.0505
= 0.899

------------------------------

P(X > µσ|X > µ))
= P(X > µσ and X > µ) / P(X > µ)

This probability will depend on whether µ > µσ or µσ > µ

For µ > µσ, then (X > µσ and X > µ) becomes (X > µ)
= P(X > µ) / P(X > µ)
= 1

For µσ > µ, then (X > µσ and X > µ) becomes (X > µσ)
= P(X > µσ) / P(X > µ)
= P(X > µσ) / (1/2)
= 2P(X > µσ)

------------------------------

P(µ − σ < X < µ + 2σ)
= P(−1 < z < 2)
= 0.9772 − 0.1587
= 0.8185


收錄日期: 2021-05-01 20:52:39
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20161121123147AA9uf55

檢視 Wayback Machine 備份