設 x1=3/10, Xn+1=1-根號(1-Xn),n=1,2,3,..... 試證明:{Xn}為收斂並求其極限?
回答 (1)
Xn+1 = 1 - √(1 - Xn)
1 - Xn+1 = √(1 - Xn)
⇒
1 - Xn+1 = (1 - X1)^(1/2ⁿ)
1 - Xn+1 = (1 - 3/10)^(1/2ⁿ)
Xn+1 = 1 - 0.7^(1/2ⁿ)
⇒
Xn = 1 - 0.7^(1/2ⁿ⁻¹)
自然數n 越大則 0 < 1/2ⁿ⁻¹ < 1 越小而 0.7 ≤ 0.7^(1/2ⁿ⁻¹) < 1 越大故 Xn = 0.3 ≤ 1 - 0.7^(1/2ⁿ⁻¹) < 0 越小,
即 {Xn} 為收斂且極限為 0。
收錄日期: 2021-04-11 21:29:52
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20161113040629AADsjKE
檢視 Wayback Machine 備份