Calculus problem about inscribed circular cone in inscribed circular cone?

2016-11-03 10:12 am
A right circular cone is to be inscribed in another right circular cone of volume 7 m^3 and altitude 5 m, with the same axis and with the vertex of the inner cone touching the base of the outer cone.


What must be the altitude of the inscribed cone in order to have the largest possible volume?

回答 (1)

2016-11-03 7:14 pm
✔ 最佳答案
設大圓錐的頂點為 A, 底座半徑為 R ;
小圓錐的頂點為 B, 底座半徑為 r , 底座的中心點為 C .
( 小圓錐的頂點 B , 同時也是大圓錐底座的中心點 )
示意圖請參考 :
http://imgur.com/a/5Kl7j

大圓錐高度 = AB = 5
大圓錐體積 = (1/3) π R².5 = 7
R² = 21/(5π)
R = √[ 21/(5π) ]

因為大小圓錐有相同的中心軸, 因此兩者的底座相互平行, 故得 :
r / R = AC / AB = AC / 5
AC = 5r / R = 5r / √[ 21/(5π) ] = 5r√(5π) / √21 = 5r√(5π)√21 / 21 = (5/21)√(105π) r
BC = 5 - AC = 5 - (5/21)√(105π) r

小圓錐體積
= (1/3) π r².BC
= (1/3) π r².[ 5 - (5/21)√(105π) r ]
= (1/3) π r².[ 105/21 - (5/21)√(105π) r ]
= ( π / 63 ).[ 105 r² - 5√(105π) r³ ]
≡ V ( r )

V ' ( r ) = ( π / 63 ).[ 210 r - 15√(105π) r² ] = 0
210 r = 15√(105π) r²
因為 r > 0 , 上式兩邊同除以 r , 等式仍成立 :
210 = 15√(105π) r
r = 210 / [ 15√(105π) ] = 14 / √(105π)

因此 r = 14/√(105π) 時, 小圓錐體積 V(r) 有極值, 且此極值是極大值, 原因為 :
極小值發生在 C點與A點重合 或 C點與B點重合 時, 此時 V(r) 有極小值為 0 .

BC
= 5 - (5/21)√(105π) r
= 5 - (5/21)√(105π).[ 14 / √(105π) ]
= 5 - 5*14/21
= 5 - 10/3
= 5/3

Ans: 5/3 m


收錄日期: 2021-04-18 15:44:15
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20161103021236AAzTOyk

檢視 Wayback Machine 備份