prove that (tanθ)/(1-cotθ)+(cotθ)/(1-tanθ)=1+tanθ+cotθ?

2016-10-28 12:19 pm

回答 (1)

2016-10-28 2:58 pm
Prove that Tanθ/(1-Cotθ)+Cotθ/(1-Tanθ)=1+Tanθ+Cotθ?
Sol
(1-Cotθ)(1-Tanθ)
=1-Tanθ-Cotθ+1
=2-Tanθ-Cotθ
Set A=Tanθ/(1-Cotθ)+Cotθ/(1-Tanθ)
A(1-Cotθ)(1-Tanθ)
=Tanθ(1-Tanθ)+Cotθ(1-Cotθ)
=Tanθ-Tan^2 θ+Cotθ-Cot^2 θ
=Tanθ+Cotθ-(Tan^2 θ+Cot^2 θ)
=Tanθ+Cotθ-(Tan^2 θ+2+Cot^2 θ)+2
=Tanθ+Cotθ-(Tanθ+Cotθ)^2+2
=(-Tanθ-Cotθ+2)(Tanθ+Cotθ+1)
=(1-Cotθ)(1-Tanθ) (Tanθ+Cotθ+1)
A=Tanθ+Cotθ+1


收錄日期: 2021-04-18 15:43:15
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20161028041906AAIcd7A

檢視 Wayback Machine 備份