y = sin^2 (3x-2) : find dy/dx?

2016-10-26 9:46 pm
Answer is 6sin(3x-2)cos(3x-2) = 3sin(6x-4). Need help with steps please !

回答 (4)

2016-10-26 9:59 pm
Chain rule and double-angle formula.
https://www.flickr.com/photos/dwread/30550383846/
2016-10-26 10:32 pm
y = [ sin (3x - 2) ]²
dy/dx = 2 [ sin (3x - 2) ] [ 3 cos (3x - 2) ]
dy/dx = 6 [ sin (3x - 2) ] [ cos (3x - 2) ]
dy/dx = 3 [ 2 ] [ sin (3x - 2) ] [ cos (3x - 2) ]
dy/dx = 3 sin (6x - 4)
2016-10-26 10:06 pm
Let u = 3x - 2
du/dx
Let y = Sin^2(u) = Sin(u) Sin(u)
Apply the Product Rule which is
dy/dx = udv + v du
Hence
dy/du = Sin(u)Cos(u) + Cos(u) Sin(u)
dy/du = 2Sin(u)Cos(u)

Now apply the Chain Rule
dy/dx = dy/du X du/dx
dy/dx = 2Sin(u)Cos(u) X 2
dy/dx = 6Sin(u)Cos(u)
Substitute back in for 'u'
dy/dx = 6Sin(3x -2)Cos(3x - 2)

Using the Trig. Identity
3(2Sin(3x-2)(Cos(3x-2)) =
3(Sin(3x-2)Cos(3x-2) + Cos(3x-2)Sin(3x-2)) =>
3Sin((3x - 2) + (3x - 2)) =>
3Sin(6x - 4)
Hence
dy/dx = 3Sin(6x - 4)
2016-10-26 9:55 pm
Chain rule gives you the LHS. You really need to apply it 3 times.
d/dx f^2 = 2f giving you 2sin
Then d/dx sin is cos giving you 2sin*cos
Then d/dx 3x-2 is 3. Put that all together and you get
2sin(3x-2)cos(3x-2)3
or
6sin(3x-2)cos(3x-2)

Double angle formula gives you the rest.


收錄日期: 2021-04-21 23:49:36
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20161026134659AAp6KGu

檢視 Wayback Machine 備份