differential equation?

2016-10-24 11:14 am
solve the xy'-y+3(x^3)y-x^4=0 with suitable substitution

回答 (1)

2016-10-24 1:47 pm
✔ 最佳答案
xy' - y + 3x³y - x⁴ = 0
xy' + ( 3x³ - 1 )y - x⁴ = 0
y' + ( 3x² - 1/x )y = x³ ..... (1式)
此為一階線性ODE

積分因子 μ
= e^[ ∫ ( 3x² - 1/x ) dx ]
= e^( x³ - ln x )
= e^x³ / e^( ln x )
= (1/x)e^x³

(1式) 乘以積分因子後 :
(1/x)(e^x³)y' + ( 3x - 1/x² )(e^x³)y = x²(e^x³)
d/dx [ (1/x)(e^x³)y ] = x²(e^x³)
(1/x)(e^x³)y = ∫ x²(e^x³) dx = (1/3)e^x³ + c
y = x*e^(-x³)[ (1/3)e^x³ + C ] = x/3 + cx*e^(-x³)

Ans: y = x/3 + cx*e^(-x³)


收錄日期: 2021-05-02 14:10:31
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20161024031408AA0om38

檢視 Wayback Machine 備份