Math Help!?
Find the function f(x) = ax^3 + bx^2 + cx + d for which f(-3) = -108, f(-1)=2, f(1)=8, and f(2) =17
回答 (3)
Plug in the given numbers to get 4 linear equations
e.g. f(1) = a+b+c+d = 8
f(x) = ax^3 + bx^2 + cx + d
-a + b - c + d = 2
a + b + c + d = 8
b + d = 5
-27a + 9b - 3c + d = -108
8a + 4b + 2c + d = 17
a = 5 n + 3, b = 6 n - 4, c = -29 n, d = 9 - 6 n, n element Z
f(x) = 8x^3 + 2x^2 - 29x + 3
Find the function f(x) = ax^3 + bx^2 + cx + d for which,
f(-3) = -108, f(-1)=2, f(1)=8, and f(2) =17.
So,
f(-3) = a(-3)^3 + b(-3)^2 +c(-3) +d = -108,
Or,
-27a +9b -3c +d = -108. .................................................. [1],
Similarly,
f(-1) = -a +b -c +d =
收錄日期: 2021-04-21 23:44:04
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20161023185030AAIHobB
檢視 Wayback Machine 備份