√(x-2) - √2 的微分怎麼算?

2016-10-17 8:23 pm

回答 (2)

2016-10-17 11:41 pm
✔ 最佳答案
Sol
y=√(x-2)-√2
y’=dy/dx
=d[√(x-2)-√2]/dx
=d[(x-2)^(1/2)-√2]/dx
=d(x-2)^(1/2)/dx
=[d(x-2)^(1/2)/d(x-2)]*[d(x-2)/dx]
=(1/2)*(x-2)^(1/2-1)
=1/[2(x-2)^(1/2)]
=1/[2√(x-2)]
or
y=√(x-2)-√2
y+√2=√(x-2)
y^2+2y√2+2=x-2
2yy’+2y’√2=1
y’(2y+2√2)=1
y’[2√(x-2)-2√2+2√2]=1
y’[2√(x-2)]=1
y’=1/[2√(x-2)]
2016-10-18 1:33 am
y=√(x-2)-√2
dy/dx=0.5(x-2)^-0.5


收錄日期: 2021-04-18 15:40:05
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20161017122342AA6vQDR

檢視 Wayback Machine 備份